

-o +h

inati nati nati

FOXP4, a novel candidate gene for angle closure glaucoma

William Presley², Su Qing Wang², Erika Ward¹, Kayla Johnson¹, Manjool Shah¹, Bin Guan³, Robert B. Hufnagel³, Julia E. Richards¹. Lev Prasov^{1,2} Department of Ophthalmology and Visual Sciences, University of Michigan, ²Department of Human Genetics, University of Michigan, ³Ophthalmic Genetics and Visual Function Branch, National Eye Institute GLAUCOMA

RESEARCH FOUNDA

NIH

Introduction

Primary angle closure glaucoma is a significant burden on vision loss worldwide, and affects 0.5% of the population¹³. This condition is defined by the apposition of the peripheral iris tissue to the iridocorneal angle, leading to blockage of the outflow pathways, rise in eve pressure, and subsequent irreversible damage to the optic nerve. Few genes have been identified as causative for primary angle closure glaucoma¹, and little is known about the developmental pathways leading to this condition. We have recently identified a multigenerational pedigree where high hyperopia, short axial length, plateau iris configuration, and angle closure glaucoma are transmitted in an autosomal dominant fashion. We have collected unrelated families and cases with the spectrum angle closure disorders for genetic and functional analysis.

Methods

An Ashkenazi Jewish kindred underwent pooled whole exome sequencing. Variants were prioritized and filtered using a customized pipeline⁴.

Functional analysis: FOXP4 structure was modeled using 2a07 crystal structure. Luciferase assays: HEK293T cells were transfected with wild-type: YFP-FOXP4

Cellular localization of GFP fluorescence was evaluated with an inverted confocal microscope Mutational screening: DNA from blood or saliva samples from 40 independent probands with angle closure spectrum phenotypes (primary angle closure, plateau iris, high hyperopia with narrow angles, primary angle closure glaucoma) were collected and processed

Expression analysis: Wild-type mouse eyes were fixed in 4% PFA overnight followed by processing for paraffin sectioning. Sections were immunostained against FOXP4 protein (anti-FOXP4)⁵ or RNA using an RNAscope *in situ* hybridization probe.

Results

А

1: BCell	<u> </u>		E.	1:1.1	7483l		<u> </u>
2 BeamCella		-		2: 2_Mdan	icate		<u> </u>
3 Rear Cells		-	L	3: 3_Figme	nte	-	
4 Clandford				4: 4_Macrop	tage		<u> </u>
S. Colorted		-	L	5: 5_Come	nal)	× -	<u> </u>
f: Connected				4:1	ejer		<u> </u>
D. Contempo				7:7,Nonpig	me		<u> </u>
1. Charlot report				8.8_Per	icate		<u> </u>
a romanas		_		9.9,84	an r		
v: Macrophage		-	_	20: 20_Ves	cat.		ſ
TO MINDON			F	11: 11,797	wn		
11: Melanocyte				12: 12_Cov	××.		
12: Neuron	F			12:13 Co	maal	5	-
3.3: NOCT	<u> </u>		-	14:14.98	arr A		-
14: Perkyte	<u> </u>		-	15: 15 Phys	eci.	\sim	F
15: ScEnde	-		<u> </u>	16:16 107	Lord	~	
16: SchwalbeLine	-			10.17.0	6ar.		
17: SchwannGe	-	<u> </u>		18-18 Schw			
18: SchwannGe -	<u> </u>	<u> </u>	<u> </u>	19:19:504			L
19: VascularEnde	<u> </u>		F	20:20.1	D cell	\sim	
		·		10.10			
D				E Contraction	Conserved and the second	Contraction 1	POM
				RPE			-

Results

Figure 3: RNA analysis of FOXP4 expression pattern in the mammalian and human eye. (A) scRNAseq analysis from mouse E13.5 eve cup with expression pattern of Foxp4. UMAP projection of scRNA sequencing data from E13.5 control mice. Each dot represents a single cell, and the proximity of cells indicates similar gene expression patterns. Cell identity is based on curation of gene expression patterns within each K-means cluster. Log2 expression of Foxp4 in single cells reveals abundant expression in retinal progenitors (RPC), differentiating retina, retinal pigment epithelium (RPE), and periocular mesenchyme. (B-C) Violin plots showing expression of FOXP4, FOXP1, and FOXP2 in the human (B) and mouse (C) outflow tracts, visualized using Spectacle⁶ and based on van Zyl et. al data7. FOXP4 is most prominently expressed in corneal tissue, while FOXP1 is more broadly expressed. (D-F) RNAscope in situ hybridization of PO wild-type mouse eves with probe specific for mouse Foxp4 with Foxp4 transcripts shown in red and nuclei stained with DAPI in blue. Low power view (D) showing expression of Foxp4 transcripts in the retina, RPE, cornea, and lens epithelium, with weak/absent expression in ciliary body. Scale bar 100um. High magnification views (E-F) showing expression of Foxp4 in the retina, periocular mesenchyme and retinal pigment epithelium. Scale bar, 25 μm. BV, blood vessels; WBC, white blood cells; RBC, red blood

and retinal pigment epithelium. Scale bar, 25 µm. BV, blood vessels; WBC, white blood cells; RBC, red blood cells; Mel, melanocytes; OS, optic stalk. P7 P21 ONL

> INL GCL

Figure 5: Functional consequences of FOXP4 p.Q478R variant. A) Luciferase assays with evaluating repression of SPRX2 promoter by FOXP4 wild-type and variant proteins as described⁸. Relative luciferase values were normalized to Renilla luciferase and empty vector was set to 1.0. FOXP4 wildtype (WT) shows repression of SPRX2 promoter. This repression is lost in FOXP4 p.H517N, an established loss of function variant that causes a multisystem FOXP4 disorder⁸. FOXP4 p.Q478R retains ability to repress the SPRX2 promoter. (B) Cellular localization of FOXP4 variants, showing cytoplasmic localization of p.H517N and p.Q478R, with predominantly nuclear localization of wildtype FOXP4. ** pc.0.01 twey's test.

Conclusions

- FOXP4 rare variant identified in a family with angle closure glaucoma, plateau iris, and hyperopia. The variant does not affect transcriptional activity in vitro, but appears to alter localization of the protein.
- FOXP4 is expressed in ocular tissues during development in the mouse eye including the retina, RPE, periocular mesenchyme, cornea, and anterior segment, supporting an important role in eye development.
- An additional rare coding VUS was identified in FOXP4 p.Phe483Leu in a patient with ACG and a small eye (axial length 20.69/20.65mm)
- Our work supports a role for FOXP4 in pathogenesis of angle closure glaucoma, though additional studies are necessary to definitively establish a causative relationship.

References

 Liu, C., Nongpiur, M.E., Khor, C.C., Vithana, E.N. & Aung, T. Primary angle closure glaucoma genomic associations and disease mechanism. Curr Opin Ophthalmol 31, 101-106 (2020). PMID: 31895154.
 Amerasinge, M. et al. The hertainbility and sibling risk of angle closure in Asians. Ophthalmology 118, 480-5 (2011). PMID: 21035870.

3. Lu, Mu, Li, S., Yang, H. & Morrisey, E. E. Forqat: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. *Mech Dev* **119 Supp1**, 5197-202 (2002). PMID: 14516685. - Prasov, L. et al. Novel TMEMB8, MRP, PRSS56 variants in a large United States high hyperopia and nanophthalmos cohort. *Sci Rep* **10**,

19986 (2020). PMID: 3230348. 5. Yin, Z., Ding, H., He, E., Chen, J. & Li, M. Up-regulation of microRNA-491-5p suppresses cell proliferation and promotes apoptosis by targeting FCWA' in human osteosarcoma. *Cell Prolif* 50(2017). PMID: 27704627.

Voigt, A.P. et al. Spectacle: An interactive resource for ocular single-cell RNA sequencing data analysis. Exp Eye Res 200, 108204 (2020).
 PMID: 32910939.

7. van 2y, 1. et al. Cell attas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A 117, 10339-10349 (2020). PMID: 32341164.
8. Snijders Blok, L et al. Heteroxygous variants that disturb the transcriptional represor activity of FOXP4 cause a developmental disorder

with speech/language delays and multiple congenital abnormalities. Genet Med 23, 534-542 (2021). PMID: 33110267.

Acknowledgements

Contact Information: <u>lprasov@umich.edu</u>) https://prasov.lab.medicine.umich.edu/

Disclosure and Commercial Relationships: None. This work was supported by the Glaucoma Research Foundation

NEI K08 EY032098 , NEI K12 EY022299 to LP.

T32GM007544 to WP and the NEI Vision Core Grant P30 EY007003

We thank Simon Fisher and Lot Snijders-Blok for YFP-FOXP4 constructs and SPRX2 luciferase vector; David McGaughey and the Ophthalmic Genomics Laboratory, and the National Intramural Sequencing Center for genomic sequencing and bioinformatic pipeline analysis.

Figure 1: FOXP4 variant identified in angle closure, short axial length family. (A) Pedigree of family showing dominant inheritance pattern. B) Integrated Genomics Viewer Jayout showing fOG sequence reads for *FOXP4* exon 12 demonstrating that 44% of reads contain variant (antisense strand) in the affected and not unaffected pool, and that this causes p.(Q478R) amino acid change. This residue is highly conserved by PhyloP conservation and invariant in higher organisms. +, sampled, * in affected pool, # in unaffected pool, half-shade – plateau iris, full shade – plateau iris, short axial length. and course/andle Course

glaucoma

Figure 2: FOXP4 structural modeling. (A) FOXP4 protein structure showing location of variants. (B-C) Homology model of wild-type FOXP4 (B) and p.Q478R (C) heterodimer with FOXP2 and bound to DNA based on SWIS5model of crystal structure 2a07. R478 appears to cause steric disruption of critical dimerization interactions. GIn rich, glutamine rich; leu zip, leucine zipper domain; Fkh DBD, forkhead DNA binding domain.

Figure 4: Expression pattern of Foxp4 across development in the mouse eye. (A-C) RNAscope in situ hybridization of P0 wild-type mouse eyes with probe specific for mouse Foxp4 with Foxp4 transcripts shown in red and nuclei stained with DAP in blue. Low power view (A) showing expression of Foxp4 transcripts in the retina, RPE, cornea, and lens epithelium, with weak/absent expression in ciliary body. Scale bar 100um. High magnification views (B-C) showing expression of Foxp4 in the retina, periocular mesenchyme and retinal pigment epithelium. Scale bar, 25 µm. (D-G) FOXP4 immunostaining (red) of P0 mouse eyes showing nuclear localized expression in the retina, RPE, and periocular mesenchyme (POM) at low power (D) and high power (E-F) view. There is also staining in the corneal epithelium and lens epithelium (G).

							Fisher						
	FOXP4			Protein	MAF AC	gnomAD	exact P-	SpliceAl					
Chr:Location	exon	rs#	cDNA variant	change	cases	MAF	value	Max Score	GERP	CADD	REVEL	ACMG Class	ACMG Rules
6:41533573	2	rs34730847	c.533 G>A	p.Gly25Gly	0.04	0.04	1	0.01	1.4	3.959	N/A	Benign	N/A
6:41533579	2	rs2104506	c.539 C>A	p.Ala27Ala	0.34	0.32	0.7134	0.01	-10.9	0.513	N/A	Benign	N/A
6:41545807	3	rs72858984	c.746 C>T	p.Ala96Ala	0.04	0.02	0.4378	0	1.91	11.17	N/A	Benign	N/A
6:41545842	in3	N/A	c.300+23G>A	N/A	0.01	N/A	N/A	0	N/A	14.33	N/A	VUS	BP4
6:41557624	in10	N/A	c.1149+32G>A	N/A	0.03	N/A	N/A	0	1.19	-0.12499	N/A	VUS	BP4
6:41558952	in12	rs9471605	c.1435-7C>T	N/A	0.14	0.09	0.0996	0	-2.33	3.075	N/A	Benign	N/A
												Likely	
6:41565533	16	N/A	c.2198 G>A	p.Glu580Glu#	0.02	N/A	N/A	0.23	N/A	7.907	N/A	Benign	BP4, BP7, PM2
6:41565542	16	rs562089407	c.2207 C>A	p.Phe583Leu#	0.02	0.00001	N/A	0.03	1.02	14.88	0.19	VUS	PM2, BP4
Chr, chromosome/location, based on GRCH37 hg19 build, MAF, minor allele frequency; AC, angle closure; gnomAD, frequency in gnomad.broadinstitute.org control													
population cohort; SpliceAl score; GERP, Genomic Evolutionary Rate Profiling conservation score, CADD, combined annotation dependent depletion score; REVEL, rare													
exome variant ensemble learner score; ACMG, American College of Medical Genetics ; VUS, variant of unknown significance, #, variant identified in the same individual													

Table 1: FOXP4 sequence variants identified in 40 unrelated angle closure/plateau iris/hyperopia probands.